The S18Y polymorphic variant of UCH-L1 confers an antioxidant function to neuronal cells.
نویسندگان
چکیده
A number of studies have associated the S18Y polymorphic variant of UCH-L1 with protection from sporadic Parkinson's Disease (PD). The mechanism involved in this protective function is unknown, but has generally been assumed to be linked to the ubiquitin-proteasome system (UPS). In the current study, we have investigated the effects of overexpression of UCH-L1 and its variants, including S18Y, in neuronal cells. We find that S18Y, but not WT, UCH-L1 confers a specific antioxidant protective function when expressed at physiological levels in human neuroblastoma cells and primary cortical neurons. In contrast, neither WT nor S18Y UCH-L1 appear to directly impact the proteasome, although they both lead to stabilization of free ubiquitin. Lack of WT mouse UCH-L1 in neurons derived from gad mice led to a decrease of free ubiquitin, but no overall decrease in UPS function or enhanced sensitivity to oxidative stress. We conclude that the S18Y variant of UCH-L1 confers a novel antioxidant function that is not present in the WT form and that this function may underlie the protective effects of this variant in certain PD populations. Our results furthermore provide indirect evidence for the importance of oxidative stress as a pathogenetic factor in certain forms of sporadic PD.
منابع مشابه
The UCH-L1 Gene Encodes Two Opposing Enzymatic Activities that Affect α-Synuclein Degradation and Parkinson's Disease Susceptibility
The assumption that each enzyme expresses a single enzymatic activity in vivo is challenged by the linkage of the neuronal enzyme ubiquitin C-terminal hydrolase-L1 (UCH-L1) to Parkinson's disease (PD). UCH-L1, especially those variants linked to higher susceptibility to PD, causes the accumulation of alpha-synuclein in cultured cells, an effect that cannot be explained by its recognized hydrola...
متن کاملBackbone and side-chain 1H, 15N and 13C resonance assignments of S18Y mutant of ubiquitin carboxy-terminal hydrolase L1
Ubiquitin carboxy-terminal hydrolase L1 (UCH-L1), also known as PGP9.5, is a protein of 223 amino acids. Although it was originally characterized as a deubiquitinating enzyme, recent studies indicate that it also functions as a ubiquitin (Ub) ligase and a mono-Ub stabilizer. It is highly abundant in brain, constituting up to 2% of total brain proteins. Down-regulation and extensive oxidative mo...
متن کاملElectronic Theses and Dissertations Uc San Diego Title: Structure/function Analysis of Ubiquitin C-terminal Hydrolase-l1 (uch-l1) Structure/function Analysis of Ubiquitin C-terminal Hydrolase – L1 (uch-l1)
Abstract: Parkinson's disease (PD) and Alzheimer's disease (AD), two of the most common neurodegenerative diseases, are caused by both genetic and environmental factors. Mammalian neuronal cells abundantly express a deubiquitinating (DUB) enzyme, Ubiquitin Carboxy-terminal hydrolase L1 (UCH-L1), which is involved in the pathogenesis of both of these neurodegenerative diseases. This DUB is selec...
متن کاملUbiquitin carboxy-terminal hydrolase L1 binds to and stabilizes monoubiquitin in neuron.
Mammalian neuronal cells abundantly express a deubiquitylating enzyme, ubiquitin carboxy-terminal hydrolase 1 (UCH L1). Mutations in UCH L1 are linked to Parkinson's disease as well as gracile axonal dystrophy (gad) in mice. In contrast to the UCH L3 isozyme that is universally expressed in all tissues, UCH L1 is expressed exclusively in neurons and testis/ovary. We found that UCH L1 associates...
متن کاملUbiquitin C-terminal hydrolase L1 (UCH-L1): structure, distribution and roles in brain function and dysfunction
Ubiquitin C-terminal hydrolase L1 (UCH-L1) is an extremely abundant protein in the brain where, remarkably, it is estimated to make up 1-5% of total neuronal protein. Although it comprises only 223 amino acids it has one of the most complicated 3D knotted structures yet discovered. Beyond its expression in neurons UCH-L1 has only very limited expression in other healthy tissues but it is highly...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Human molecular genetics
دوره 17 14 شماره
صفحات -
تاریخ انتشار 2008